Search by BoMiProt ID - Bomi6

Primary Information

BoMiProt ID Bomi6
Protein Name Serum albumin
Organism Bos taurus
Uniprot IDP02769
Milk FractionWhey
Ref Sequence ID NP_851335.1
Aminoacid Length 607
Molecular Weight 69293
FASTA Sequence Download
Gene Name ALB
Gene ID 280717
Protein Existence Status Reviewed: Experimental evidence at protein level

Secondary Information

Presence in other biological fluids/tissue/cells serum, milk, tear, urine
Endogenous/Bioactive peptides - Fragment - Sequence - Effect Albutensin A - 208–216 - ALKAWSVAR - Ileum contraction, ACE inhibition Ref
Serophin - 399–404 - YGFQDA - Opioid Ref
Protein Function Regulate colloidal osmotic pressure of blood; maintains blood pH; transports metal ions, insoluble small molecules and nutrients (including long chain fatty acids) to various organs; key role in drug thermodynamics and pharmacodynamics; degrades into amino acids and provides nutrition to cells;major source of energy for tumor growth; used as a fusion protein; controls concentration of Ca2+ and Mg2+ in mammals
Biochemical Properties Binds to compounds in a reversible manner; form complexes with aromatic ligands; increase in temperature shifts α - helix to random coil; highly soluble in pH 7 and 4; reversibility of denaturation is high at low concentration if heated upto 100°C; abundant disulfide bridges; single free thiol; long circulatory half-life
Significance in milk Reflects the progression in lactation stage; elevated in pathologically damaged epithelium of bovine teats; activation of autoimmunity through molecular mimmicry
Site(s) of PTM(s)

N-glycosylation, O-glycosylation,
CATH Matched CATH superfamily
Predicted Disorder Regions NA
DisProt Annotation
TM Helix Prediction No TM helices
PDB ID 2l7u, 3v03, 4f5s, 4jk4, 4or0,
Additional Comments In solution, the different isomeric forms of serum albumin exist depending on pH value; synthesized in the liver without prosthetic groups; one of the few plasma protein groups lacking carbohydrates; owing to good water-solubility,ready availability,biodegrad- ability, lack of toxicity,minimal immunogenicity,and its preferential accumulation in tumor and inflamed tissues make it an ideal carrier for drug delivery
Bibliography 1. Wang, S.-L., Lin, S.-Y., Li, M.-J., Wei, Y.-S., and Hsieh, T.-F. (2005) Temperature effect on the structural stability, similarity, and reversibility of human serum albumin in different states. Biophys. Chem. 114, 205–212.
2. Sheldrake, R. F., Hoare, R. J., and McGregor, G. D. (1983) Lactation stage, parity, and infection affecting somatic cells, electrical conductivity, and serum albumin in milk. J. Dairy Sci. 66, 542–547.
3. Michnik, A., Michalik, K., and Drzazga, Z. (2005) Stability of bovine serum albumin at different pH. J. Therm. Anal. Calorim. 80, 399–406.
4. Carter, D. C. and Ho, J. X. (1994) Structure of serum albumin. Adv. Protein Chem. 45, 153–203.
5. Nielsen, H., Kragh-Hansen, U., Minchiotti, L., Galliano, M., Brennan, S. O., Tárnoky, A. L., Franco, M. H., Salzano, F. M., and Sugita, O. (1997) Effect of genetic variation on the fatty acid-binding properties of human serum albumin and proalbumin. Biochim. Biophys. Acta 1342, 191–204.
6. 1. Urquiza, N. M., Naso, L. G., Manca, S. G., Lezama, L., Rojo, T., Williams, P. A. M., and Ferrer, E. G. (2012) Antioxidant activity of methimazole–copper(II) bioactive species and spectroscopic investigations on the mechanism of its interaction with Bovine Serum Albumin. Polyhedron 31, 530–538.
7. 1. Majorek, K. A., Porebski, P. J., Dayal, A., Zimmerman, M. D., Jablonska, K., Stewart, A. J., Chruszcz, M., and Minor, W. (2012) Structural and immunologic characterization of bovine, horse, and rabbit serum albumins. Mol. Immunol. 52, 174–182.
8. 1. Liu, H., Shi, X., Xu, M., Li, Z., Huang, L., Bai, D., and Zeng, Z. (2011) Transition metal complexes of 2, 6-di ((phenazonyl-4-imino) methyl)-4-methylphenol: Structure and biological evaluation. Eur. J. Med. Chem. 46, 1638–1647.
9. Sathyadevi, P., Krishnamoorthy, P., Jayanthi, E., Butorac, R. R., Cowley, A. H., and Dharmaraj, N. (2012) Studies on the effect of metal ions of hydrazone complexes on interaction with nucleic acids, bovine serum albumin and antioxidant properties. Inorganica Chim. Acta 384, 83–96.
10. 1. Gharagozlou, M. and Boghaei, D. M. (2008) Interaction of water-soluble amino acid Schiff base complexes with bovine serum albumin: fluorescence and circular dichroism studies. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 71, 1617–1622.
11. 1. Krishnamoorthy, P., Sathyadevi, P., Cowley, A. H., Butorac, R. R., and Dharmaraj, N. (2011) Evaluation of DNA binding, DNA cleavage, protein binding and in vitro cytotoxic activities of bivalent transition metal hydrazone complexes. Eur. J. Med. Chem. 46, 3376–3387.
12. 1. Sathyadevi, P., Krishnamoorthy, P., Butorac, R. R., Cowley, A. H., Bhuvanesh, N. S. P., and Dharmaraj, N. (2011) Effect of substitution and planarity of the ligand on DNA/BSA interaction, free radical scavenging and cytotoxicity of diamagnetic Ni(ii) complexes: A systematic investigation. Dalt. Trans. 40, 9690.
13. 1. Malhotra, A. and Mittal, B. R. (2014) SiRNA gene therapy using albumin as a carrier. Pharmacogenet. Genomics 24, 582–587.
14. 1. Schnitzer, J. E. and Oh, P. (1994) Albondin-mediated capillary permeability to albumin. Differential role of receptors in endothelial transcytosis and endocytosis of native and modified albumins. J. Biol. Chem. 269, 6072–6082.
15. 1. Minshall, R. D., Tiruppathi, C., Vogel, S. M., and Malik, A. B. (2002) Vesicle formation and trafficking in endothelial cells and regulation of endothelial barrier function. Histochem. Cell Biol. 117, 105–112