Primary Information |
|---|
| BoMiProt ID | Bomi5617 |
|---|
| Protein Name | Eukaryotic translation initiation factor 3 subunit B |
|---|
| Organism | Bos taurus |
|---|
| Uniprot ID | A7MB16 |
|---|
| Milk Fraction | Exosomes |
|---|
| Ref Sequence ID | NP_001095826.1 |
|---|
| Aminoacid Length | 786 |
|---|
| Molecular Weight | 88919 |
|---|
| FASTA Sequence |
Download |
|---|
| Gene Name | EIF3B |
|---|
| Gene ID | 789999 |
|---|
| Protein Existence Status | reviewed |
|---|
Secondary Information |
|---|
| Protein Function | RNA-binding component of the eukaryotic translation initiation factor 3 (eIF-3) complex, which is required for several steps in the initiation of protein synthesis.The eIF-3 complex specifically targets and initiates translation of a subset of mRNAs involved in cell proliferation, including cell cycling, differentiation and apoptosis, and uses different modes of RNA stem-loop binding to exert either translational activation or repression. |
|---|
| Biochemical Properties | The eIF3b protein in mammals contains two domains. The N-terminal domain (NTD) consists of a structurally uncanonical RNA recognition motif (RRM) and the WD40β domain.The sheet area of eIF3b-RRM in humans (residues 185-268), is mostly negatively charged.The typical RRM, a common structural motif, contains conserved ribonucleoprotein1 (RNP1) and ribonucleoprotein2 (RNP2) sequences, which include conserved aromatic residues necessary for interaction with RNA. The RNP2 of eIF3b has a shortage of aromatic residues.The WD40β domain of eIF3b (residues 306 -705), a nine-bladed β-propeller fold, is highly conserved from yeast to humans. |
|---|
| PTMs | Acetylation, Phosphorylation |
|---|
Site(s) of PTM(s)
N-glycosylation,
O-glycosylation,
Phosphorylation
| >sp|A7MB16|EIF3B_BOVIN Eukaryotic translation initiation factor 3 subunit B OS=Bos taurus OX=9913 GN=EIF3B PE=2 SV=1
MQDAENVAAPEAAEQRAEPGPEQAAAEPSPGAEVARPGVQEAAGGEDAEAGPGPEGPAEP
AADGEGKADATPGATPPPPEESSAQLAGEAPAEQAQDAAAEAGS*104EGAGGDPDGAAEDGGA
DEPS*124FS*126DPEDFVDDVS*136EEELLADVLKDRPQEADGIDSVIVVDNVPQVGPDRLEKLKNVIH
KIFSKFGKITNDFYPEEDGRTKGYIFLEYAS*211PAHALDAVKNADGYKLDKQHTFRVNLFTD
FDKYMTISDEWDIPEKQPFKDLGNLRYWLEEAECRDQYSVIFESGDRTSIFWNDVKDPVS
IEERARWTETYVRWSPKGTYLATFHQRGIALWGGEKFKQIQRFSHQGVQLIDFSPCERYL
VTFSPLMDTQDDPQAIIIWDILTGQKKRGFHCESSAHWPIFKWSHDGKFFARMTLDTLSI
YETPSMGLLDKKSLKISGIKDFSWSPGGNIIAFWVPEDKDIPARVTLMQLPTRQEIRVRN
LFNVVDCKLHWQKNGDYLCVKVDRTPKGTQGVVTNFEIFRMREKQVPVDVVEMKETIIAF
AWEPNGSKFAVLHGEAPRISVSFYHVKNNGKIELIKMFDKQQANTIFWSPQGQFVVLAGL
RSMNGALAFVDTSDCTVMNIAEHYMASDVEWDPTGRYVVTSVSWWSHKVDNAYWLWTFQG
RLLQKNSKDRFCQLLWRPRPPTLLSQDQIKQIKKDLKKYSKIFEQKDRLSQSKASKELVE
RRRTMMEDFRKYRKMAQELYMEQKNARLELRGGVDTDELDSNVDDWEEETIEFFVTEEII
PLGNQE |
|---|
| Predicted Disorder Regions | 1-130 |
|---|
| DisProt Annotation | |
|---|
| TM Helix Prediction | No TM helices |
|---|
| Significance of PTMs | seven phosphorylation sites (Ser-83, Ser-85, Ser-119, Ser-125, Ser-152, Ser-154, and Ser-164) and one acetylation site (Met-1) which are related to the activity and function of eif3b |
|---|
| Bibliography | 1.Feng, X., Li, J., & Liu, P. (2018). The Biological Roles of Translation Initiation Factor 3b. International journal of biological sciences, 14(12), 1630–1635. https://doi.org/10.7150/ijbs.26932 |