Bibliography | 1. Liu, L., Lin, Y., Liu, L., Bian, Y., Zhang, L., Gao, X., & Li, Q. (2015). 14-3-3γ Regulates Lipopolysaccharide-Induced Inflammatory Responses and Lactation in Dairy Cow Mammary Epithelial Cells by Inhibiting NF-κB and MAPKs and Up-Regulating mTOR Signaling. International Journal of Molecular Sciences, 16(7), 16622–16641. https://doi.org/10.3390/ijms160716622. 2. Danes, C. G., Wyszomierski, S. L., Lu, J., Neal, C. L., Yang, W., & Yu, D. (2008). 14-3-3 zeta down-regulates p53 in mammary epithelial cells and confers luminal filling. Cancer Research, 68(6), 1760–1767. https://doi.org/10.1158/0008-5472.CAN-07-3177. 3. Ling, C., Zuo, D., Xue, B., Muthuswamy, S., & Muller, W. J. (2010). A novel role for 14-3-3sigma in regulating epithelial cell polarity. Genes & Development, 24(9), 947–956. https://doi.org/10.1101/gad.1896810. 4. Megidish, T., Cooper, J., Zhang, L., Fu, H., & Hakomori, S. (1998). A novel sphingosine-dependent protein kinase (SDK1) specifically phosphorylates certain isoforms of 14-3-3 protein. The Journal of Biological Chemistry, 273(34), 21834–21845. https://doi.org/10.1074/jbc.273.34.21834. 5. Michaud, N. R., Fabian, J. R., Mathes, K. D., & Morrison, D. K. (1995). 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Molecular and Cellular Biology, 15(6), 3390–3397. https://doi.org/10.1128/mcb.15.6.3390. 6. Campbell, J. K., Gurung, R., Romero, S., Speed, C. J., Andrews, R. K., Berndt, M. C., & Mitchell, C. A. (1997). Activation of the 43 kDa inositol polyphosphate 5-phosphatase by 14-3-3zeta. Biochemistry, 36(49), 15363–15370. https://doi.org/10.1021/bi9708085. 7. Celis, J. E., Gesser, B., Rasmussen, H. H., Madsen, P., Leffers, H., Dejgaard, K., … Vandekerckhove, J. (1990). Comprehensive two‐dimensional gel protein databases offer a global approach to the analysis of human cells: The transformed amnion cells (AMA) master database and its link to genome DNA sequence data. ELECTROPHORESIS, 11(12), 989–1071. https://doi.org/10.1002/elps.1150111202. 8. Isobe, T., Ichimura, T., Sunaya, T., Okuyama, T., Takahashi, N., Kuwano, R., & Takahashi, Y. (1991). Distinct forms of the protein kinase-dependent activator of tyrosine and tryptophan hydroxylases. Journal of Molecular Biology, 217(1), 125–132. https://doi.org/10.1016/0022-2836(91)90616-e. 9. Wang, W., & Shakes, D. C. (1996). Molecular evolution of the 14-3-3 protein family. Journal of Molecular Evolution, 43(4), 384–398. https://doi.org/10.1007/bf02339012. 10.Minamida S, Iwamura M, Kodera Y, Kawashima Y, Tabata K, Matsumoto K, Fujita T, Satoh T, Maeda T, Baba S. 14-3-3 protein beta/alpha as a urinary biomarker for renal cell carcinoma: proteomic analysis of cyst fluid. Anal Bioanal Chem. 2011 Jul;401(1):245-52. doi: 10.1007/s00216-011-5057-5. Epub 2011 May 8. PMID: 21553213. 11.Wang X, Ren Y, Li J, Ji Z, Chen F, Wang X. Identification of the 14-3-3 β/α-A protein as a novel maternal peptidoglycan-binding protein that protects embryos of zebrafish against bacterial infections. Dev Comp Immunol. 2021 Jan;114:103867. doi: 10.1016/j.dci.2020.103867. Epub 2020 Sep 12. PMID: 32931839. |