Search by BoMiProt ID - Bomi119

Primary Information

BoMiProt ID Bomi119
Protein Name Osteopontin
Organism Bos taurus
Uniprot IDP31096
Milk FractionWhey
Ref Sequence ID NP_776612.1
Aminoacid Length 278
Molecular Weight 30904
FASTA Sequence Download
Gene Name SPP1
Gene ID 281499
Protein Existence Status Reviewed: Experimental evidence at protein level

Secondary Information

Presence in other biological fluids/tissue/cells blood, urine, seminal fluid
Protein Function Inhibition of ectopic calcification, bone remodelling, cancer metastasis and immune modulatory functions; act as an opsonin, as it binds directly to several bacterial strains leading to enhanced phagocytosis by macrophages; can induce Th1 type immunity by inducing interleukin-12 expression in macrophages
Biochemical Properties resistant to proteolysis by neonatal gastric juice;very resistant to harsh conditions; e.g., heat treatment at 90 C has no effect on the post-translational modifications decorating the protein;Proteolytic cleavage close to the integrin binding motifs has been demonstrated to increase the integrin binding properties of OPN; Milk OPN is a very acidic protein due to a high degree of negatively charged amino acids and the many phosphorylations decorating the protein;
Significance in milk OPN plays a role in the development of the infant and could provide an important immunological signal during development; OPN, which possess known cytokine-like properties, was the most abundantly expressed when compared with the expression of 240 cytokine related genes in human milk; involved in mammary gland development and differentiation; bind and form soluble complexes with calcium ions which together with especially the caseins, could inhibit unintentional precipitation of amorphous calcium phosphate in milk; act as a transporter of these immunomodulating and antimicrobial proteins to their site of action and to protect them from proteolysis
PTMs Phosphorylated glycoprotein; ~25 phosphates distributed over 36 potential sites in human milk osteopontin; ~22 phosphates distributed over 28 potential sites in bovine milk osteopontin; Bovine milk OPN contains three O-glycosylated threonine residues close to the integrin binding motifs; The glycan structures on human milk OPN have been shown to consist of large fucosylated N-acetyllactosamine units; the carbohydrates on bovine OPN consist of a disialylated GalNAc-galactose cores
Site(s) of PTM(s)

N-glycosylation, O-glycosylation,
>sp|P31096|OSTP_BOVIN Osteopontin OS=Bos taurus OX=9913 GN=SPP1 PE=1 SV=2
Predicted Disorder Regions (1-278)
DisProt Annotation
TM Helix Prediction No TM helices
PDB ID 2dxr, 2dxy, 2dyx, 2e0s, 2e1s, 2fa7, 2g93, 2h4i, 2hca, 2md1, 2md2, 2md3, 2md4, 2nuv, 2nwj, 2o1l, 2o51, 2ocu, 2p1s, 2px1, 2q8j, 2qje, 2r71, 2r9j, 2zmb, 3cfl, 3ci8, 3crb, 3e9x, 3iaz, 3ib0, 3ib1, 3ib2, 3k0v, 3kj7, 3mjn, 3mjn, 3o97, 3rgy, 3sdf, 3taj, 3tod, 3tus, 3u72, 3u8q, 3ugw, 3uk4, 3usd, 3v5a,3vdf, 4dig, 4dxu, 4fim, 4fjp, 4for, 4g2z, 4g77, 4g8h, 4grk, 4n6p, 4ned, 4oqo, 5cry, 5hbc, 1blf, 1lfc, 1nkx, 1sdx, 1y58, 2alu, 2ays, 2b65, 2doj, 2dp8, 2dqv, 2ds9, 2dsf, 2dvc, 2dwa, 2dwh, 2dwi, 2dwj,
Bibliography 1. Bautista, D. S., Saad, Z., Chambers, A. F., Tonkin, K. S., O’Malley, F. P., Singhal, H., Tokmakejian, S., Bramwell, V., and Harris, J. F. (1996) Quantification of osteopontin in human plasma with an ELISA: basal levels in pre- and postmenopausal women. Clin. Biochem. 29, 231–239.
2. Senger, D. R., Perruzzi, C. A., Papadopoulos, A., and Tenen, D. G. (1989) Purification of a human milk protein closely similar to tumor-secreted phosphoproteins and osteopontin. Biochim. Biophys. Acta 996, 43–48.
3. Hoyer, J. R., Otvos, L., and Urge, L. (1995) Osteopontin in urinary stone formation. Ann. N. Y. Acad. Sci. 760, 257–265.
4. Cancel, A. M., Chapman, D. A., and Killian, G. J. (1999) Osteopontin localization in the Holstein bull reproductive tract. Biol. Reprod. 60, 454–460.
5. Anborgh, P. H., Mutrie, J. C., Tuck, A. B., and Chambers, A. F. (2011) Pre- and post-translational regulation of osteopontin in cancer. J. Cell Commun. Signal. 5, 111–122.
6. Schack, L., Stapulionis, R., Christensen, B., Kofod-Olsen, E., Skov Sorensen, U. B., Vorup-Jensen, T., Sorensen, E. S., and Hollsberg, P. (2009) Osteopontin Enhances Phagocytosis through a Novel Osteopontin Receptor, the X 2 Integrin. J. Immunol. 182, 6943–6950.
7. Schack, L., Stapulionis, R., Christensen, B., Kofod-Olsen, E., Skov Sorensen, U. B., Vorup-Jensen, T., Sorensen, E. S., and Hollsberg, P. (2009) Osteopontin Enhances Phagocytosis through a Novel Osteopontin Receptor, the X 2 Integrin. J. Immunol. 182, 6943–6950.
8. Chatterton, D. E. ., Rasmussen, J. ., Heegaard, C. ., Sørensen, E. ., and Petersen, T. . (2004) In vitro digestion of novel milk protein ingredients for use in infant formulas: Research on biological functions. Trends Food Sci. Technol. 15, 373–383.
9. Ashkar, S., Weber, G. F., Panoutsakopoulou, V., Sanchirico, M. E., Jansson, M., Zawaideh, S., Rittling, S. R., Denhardt, D. T., Glimcher, M. J., and Cantor, H. (2000) Eta-1 (osteopontin): an early component of type-1 (cell-mediated) immunity. Science 287, 860–864.
10. Agnihotri, R., Crawford, H. C., Haro, H., Matrisian, L. M., Havrda, M. C., and Liaw, L. (2001) Osteopontin, a Novel Substrate for Matrix Metalloproteinase-3 (Stromelysin-1) and Matrix Metalloproteinase-7 (Matrilysin). J. Biol. Chem. 276, 28261–28267.
11. Christensen, B., Kläning, E., Nielsen, M. S., Andersen, M. H., and Sørensen, E. S. (2012) C-terminal modification of osteopontin inhibits interaction with the αVβ3-integrin. J. Biol. Chem. 287, 3788–3797.
12. Boskey, A. L., Christensen, B., Taleb, H., and Sørensen, E. S. (2012) Post-translational modification of osteopontin: Effects on in vitro hydroxyapatite formation and growth. Biochem. Biophys. Res. Commun. 419, 333–338.
13. Sørensen, E. S., Petersen, T. E., and Højrup, P. (1995) Posttranslational modifications of bovine osteopontin: Identification of twenty-eight phosphorylation and three O -glycosylation sites. Protein Sci. 4, 2040–2049.