Search by BoMiProt ID - Bomi146


Primary Information

BoMiProt ID Bomi146
Protein Name Haptoglobin
Organism Bos taurus
Uniprot IdQ2TBU0
Milk FractionWhey
Ref Sequence Id NP_001035560.1
Amino Acid Lenth 401
Molecular Weight 44859
Fasta Sequence https://www.uniprot.org/uniprot/Q2TBU0.fasta
Gene Name HP
Gene Id 280692
Protein Existence Status Reviewed: Experimental evidence at transcript level

Secondry Information

Presence in other biological fluids/tissue/cells serum, saliva, amniotic fluid, urine
Protein Function antioxidant, scavenger of free hemoglobin and carry them for degradation in the liver and for iron recycling, has angiogenic, anti-inflammatory and immunomodulatory properties; binds to most CD4 and CD8 T lymphocytes, directly inhibiting their proliferation and further modifying the T helper 1/Th2 balance; haptoglobin polymorphism may play a role in susceptibility to bacterial infections in patients with liver cirrhosis
Biochemical Properties 2 peptides derived from haptoglobin can independently bind to hemoglobin and prevent it from oxidizing substrate; highest binding affinity for hemoglobin; α and ß chains are covalently linked by an intermolecular disulfide bond formed by Cys131 and Cys248; hydrophobic region, adjacent to the Hb-binding site is responsible for the chaperonelike activity of HPT
Significance in milk significant role in the early response of the mammary gland to pathogenic bacteria;
PTMs Acidic glycoprotein tetramer; β-chain contains four N-glycosylation sites at Asn184, Asn207, Asn211 and Asn241; increased O-glycosylation like fucosylation was revealed in different diseases; fucosylation and sialylation have been reported to influence ligand–receptor interactions as found in humans
Bibliography 1. Vitalis, Z., Altorjay, I., Tornai, I., Palatka, K., Kacska, S., Palyu, E., Tornai, D., Udvardy, M., Harsfalvi, J., Dinya, T., Veres, G., Lakatos, P. L., and Papp, M. (2011) Phenotypic polymorphism of haptoglobin: A novel risk factor for the development of infection in liver cirrhosis. Hum. Immunol. 72, 348–354.
2. Kalmus, P., Simojoki, H., Pyörälä, S., Taponen, S., Holopainen, J., and Orro, T. (2013) Milk haptoglobin, milk amyloid A, and N-acetyl-β-d-glucosaminidase activity in bovines with naturally occurring clinical mastitis diagnosed with a quantitative PCR test. J. Dairy Sci. 96, 3662–3670.
3. Melamed-Frank, M., Lache, O., Enav, B. I., Szafranek, T., Levy, N. S., Ricklis, R. M., and Levy, A. P. (2001) Structure-function analysis of the antioxidant properties of haptoglobin. Blood 98, 3693–3698.
4. Polticelli, F., Bocedi, A., Minervini, G., and Ascenzi, P. (2008) Human haptoglobin structure and function - a molecular modelling study. FEBS J. 275, 5648–5656.
5. Kαtnik, I. and Dobryszycka, W. (1990) Enzyme Immunoassay to Measure Low Levels of Haptoglobin in Biological Fluids. J. Immunoassay 11, 503–517.
6. Wang, Y., Kinzie, E., Berger, F. G., Lim, S.-K., and Baumann, H. (2001) Haptoglobin, an inflammation-inducible plasma protein. Redox Rep. 6, 379–385.
7. Wejman, J. C., Hovsepian, D., Wall, J. S., Hainfeld, J. F., and Greer, J. (1984) Structure and assembly of haptoglobin polymers by electron microscopy. J. Mol. Biol. 174, 343–368.
8. Eckersall, P. D., Young, F. J., Nolan, A. M., Knight, C. H., McComb, C., Waterston, M. M., Hogarth, C. J., Scott, E. M., and Fitzpatrick, J. L. (2006) Acute Phase Proteins in Bovine Milk in an Experimental Model of Staphylococcus aureus Subclinical Mastitis. J. Dairy Sci. 89, 1488–1501.
9. Andersen, C. B. F., Torvund-Jensen, M., Nielsen, M. J., de Oliveira, C. L. P., Hersleth, H.-P., Andersen, N. H., Pedersen, J. S., Andersen, G. R., and Moestrup, S. K. (2012) Structure of the haptoglobin–haemoglobin complex. Nature 489, 456–459.
10. Boonyapranai, K., Tsai, H.-Y., Chen, M. C.-M., Sriyam, S., Sinchaikul, S., Phutrakul, S., and Chen, S.-T. (2011) Glycoproteomic analysis and molecular modeling of haptoglobin multimers. Electrophoresis 32, 1422–1432.
11. Mann, A. C., Record, C. O., Self, C. H., and Turner, G. A. (1994) Monosaccharide composition of haptoglobin in liver diseases and alcohol abuse: large changes in glycosylation associated with alcoholic liver disease. Clin. Chim. Acta. 227, 69–78.
12. Matsumoto, K., Yokote, H., Arao, T., Maegawa, M., Tanaka, K., Fujita, Y., Shimizu, C., Hanafusa, T., Fujiwara, Y., and Nishio, K. (2008) N -Glycan fucosylation of epidermal growth factor receptor modulates receptor activity and sensitivity to epidermal growth factor receptor tyrosine kinase inhibitor. Cancer Sci. 99, 1611–1617.
13. Arredouani, M., Matthijs, P., Van Hoeyveld, E., Kasran, A., Baumann, H., Ceuppens, J. L., and Stevens, E. (2003) Haptoglobin directly affects T cells and suppresses T helper cell type 2 cytokine release. Immunology 108, 144–151.