Search by BoMiProt ID - Bomi12


Primary Information

BoMiProt ID Bomi12
Protein Name Transforming growth factor beta-2
Organism Bos taurus
Uniprot IdP21214
Milk FractionWhey
Ref Sequence Id NP_001106723.1
Aminoacid Length 414
Molecular Weight 47692
Fasta Sequence https://www.uniprot.org/uniprot/P21214.fasta
Gene Name TGFB2
Gene Id 534069
Protein Existence Status Reviewed: Experimental evidence at protein level

Secondary Information

Protein Function maintenance of metabolic homeostasis in the bone tissue; leading role in the fracture healing process; induces chondrogenesis and osteogenesis; potent inhibitor of intestinal epithelial cell proliferation
Biochemical Properties A dimer; a compact, globular conformation; single interchain disulfide bridge, suggesting that hydrophobic interactions between the two chains are of major importance in stabilizing the dimer; TßRIII shows affinity to all three TGFß forms and the highest to TGFß2; low pH activates TGFß2; TGF-8 directly induces an H-chain class switch which results in the expression of secretory IgA in lipopolysaccharide-stimulated B-cell cultures
Significance in milk have inhibitory effects on [3H]thymidine uptake by concanavalin-A-stimulated thymocytes; found in milk MFG and has immunosuppressive effects; important roles in the regulation of growth and differentiation processes in the foetus, neonate and adult and leads us to speculate on the function of these molecules in milk; regulate growth and differentiation of the intestinal epithelia from the lumenal surface of the neonatal gut in the early days following birth
Site(s) of PTM(s)

N-glycosylation, O-glycosylation,
Phosphorylation
Predicted Disorder Regions 56-60,262-280
DisProt Annotation
TM Helix Prediction 1TMH ; (7-29)
Additional Comments TGFß2 RNAand TGFß3 RNA levels are the highest on the 7th day of the fracture
Bibliography 1. Daopin, S., Piez, K. A., Ogawa, Y., & Davies, D. R. (1992). Crystal structure of transforming growth factor-beta 2: an unusual fold for the superfamily. Science (New York, N.Y.), 257(5068), 369–373. https://doi.org/10.1126/science.1631557.
2. Joyce, M. E., Roberts, A. B., Sporn, M. B., & Bolander, M. E. (1990). Transforming growth factor-beta and the initiation of chondrogenesis and osteogenesis in the rat femur. The Journal of Cell Biology, 110(6), 2195–2207. https://doi.org/10.1083/jcb.110.6.2195.
3. Cho, T.-J., Gerstenfeld, L. C., & Einhorn, T. A. (2002). Differential temporal expression of members of the transforming growth factor beta superfamily during murine fracture healing. Journal of Bone and Mineral Research : The Official Journal of the American Society for Bone and Mineral Research, 17(3), 513–520. https://doi.org/10.1359/jbmr.2002.17.3.513.
4. Cox, D. A., & Bürk, R. R. (1991). Isolation and characterisation of milk growth factor, a transforming-growth-factor-beta 2-related polypeptide, from bovine milk. European Journal of Biochemistry, 197(2), 353–358. https://doi.org/10.1111/j.1432-1033.1991.tb15918.x.
5. Javelaud, D., & Mauviel, A. (2004). Mammalian transforming growth factor-betas: Smad signaling and physio-pathological roles. The International Journal of Biochemistry & Cell Biology, 36(7), 1161–1165. https://doi.org/10.1016/S1357-2725(03)00255-3