Primary Information | |
---|---|
BoMiProt ID | Bomi107 |
Protein Name | Beta-lactoglobulin |
Organism | Bos taurus |
Uniprot Id | P02754 |
Milk Fraction | Whey |
Amino Acid Lenth | 178 |
Molecular Weight | 19883 |
Fasta Sequence | https://www.uniprot.org/uniprot/P02754.fasta |
Gene Name | LGB |
Gene Id | 280838 |
Protein Existence Status | Reviewed: Experimental evidence at protein level |
Secondry Information | |
Endogenous/Bioactive peptides - Fragment - Sequence - Effect | ß-lactorphin - 102–105 - TLLF - Non-opioid ACE-inhibition Ref 142–148 - ALPMHIR - ACE-inhibition Ref lactotensin - 146–149 - HIRL - Ileum contraction, hypocholesterolemic activity Ref |
Protein Function | Role in molecular transport or possibly some form of modulator; binds both fatty acids and retinol |
Biochemical Properties | Initial denaturation of β-Lg led to the formation of small well defined clusters with a size independent to concentration, temperature and ionic strength; β-lactoglobulin dimers are resistant to boiling or denaturing and reducing conditions; potential lactosylation can occur in milk at an elevated temperature; increasing temperature up to 30°C the content of β- strands remains constant, decreases strongly between 30 and 40°C with approximately 8 to 10%, and decreases more gradually up to 22% at 95°C; α-helical content remains constant from 15 to 65°C and decreases to 7% at 75°C; the β-turn content remains constant throughout the temperature range |
Significance in milk | Dominant bovine milk allergen; |
PDB ID | 1B0O, 1B8E, 1BEB, 1BSO, 1BSQ, 1BSY, 1CJ5, 1DV9, 1GX8, 1GX9, 1GXA, 1QG5, 1UZ2, 1YUP, 2AKQ, 2BLG, 2GJ5, 2Q2M, 2Q2P, 2Q39, 2R56, 3BLG, 3KZA, 3NPO, 3NQ3, 3NQ9, 3PH5, 3PH6, 3UEU, 3UEV, 3UEW, 3UEX, 4DQ3, 4DQ4, 4GNY, 4IB6, 4IB7, 4IB8, 4IB9, 4IBA, 4KII, 4LZU, 4LZV, 4Y0P, 4Y0Q, 4Y0R, 5EEE, 5HTD, 5HTE, 5IO5, 5IO7, 5K06, 5LKE, 5LKF, 5NUJ, 5NUK, 5NUM, 5NUN, 5Y5C, 6FXB, 6GE7, 6GF9, 6GFS, 6GHH, 6NKQ, 6QI6, 6QI7, 6QPD, 6QPE, 6RWP, 6RWQ, 6RWR, 6rys, 6ryt, |
Bibliography | 1. Duan, C., Li, A., Yang, L., Zhao, R., Fan, W., and Huo, G. (2014) Comparison of immunomodulating properties of Beta-lactoglobulin and its hydrolysates. Iran. J. Allergy. Asthma. Immunol. 13, 26–32. 2. de Jongh, H. H. J., Gröneveld, T., and de Groot, J. (2001) Mild Isolation Procedure Discloses New Protein Structural Properties of β-Lactoglobulin. J. Dairy Sci. 84, 562–571. 3. Prioult, G., Pecquet, S., and Fliss, I. (2005) Allergenicity of acidic peptides from bovine β-lactoglobulin is reduced by hydrolysis with Bifidobacterium lactis NCC362 enzymes. Int. Dairy J. 15, 439–448. 4. Kontopidis, G., Holt, C., and Sawyer, L. (2004) Invited Review: β-Lactoglobulin: Binding Properties, Structure, and Function. J. Dairy Sci. 87, 785–796. 5. Kontopidis, G., Holt, C., and Sawyer, L. (2002) The Ligand-binding Site of Bovine β-Lactoglobulin: Evidence for a Function? J. Mol. Biol. 318, 1043–1055. 6. Fogliano, V., Monti, S. M., Visconti, A., Randazzo, G., Facchiano, A. M., Colonna, G., and Ritieni, A. (1998) Identification of a beta-lactoglobulin lactosylation site. Biochim. Biophys. Acta 1388, 295–304. 7. Morgan, F., Léonil, J., Mollé, D., and Bouhallab, S. (1997) Nonenzymatic lactosylation of bovine beta-lactoglobulin under mild heat treatment leads to structural heterogeneity of the glycoforms. Biochem. Biophys. Res. Commun. 236, 413–417. 8. Yamauchi R, Ohinata K, Yoshikawa M. β-Lactotensin and neurotensin rapidly reduce serum cholesterol via NT2 receptor. Peptides. 2003;24(12):1955–61. 9. Mullally MM, Meisel H, FitzGerald RJ. Identification of a novel angiotensin-I-converting enzyme inhibitory peptide corresponding to a tryptic fragment of bovine β-lactoglobulin. FEBS Lett [Internet]. 1997 Jan 27 [cited 2019 Nov 26];402(2–3):99–101. Available from: http://doi.wiley.com/10.1016/S0014-5793%2896%2901503-7. 10. FitzGerald RJ, Meisel H. Lactokinins: Whey protein-derived ACE inhibitory peptides. Nahrung - Food. 1999 Jun;43(3):165–7. |